Postup výpočtu potřeby tepla pro žádosti Zelená úsporám (verze 4)

Obsah

-názvy programů a modulů umožňujících ohodnotit energetickou náročnost budov

-koncepce výpočtů dokládaných k žádosti o dotaci Zelená úsporám

- -koncepce výpočtu Uekv u konstrukcí přilehlých k zemině
- -koncepce výpočtu vlivu sousedních nevytápěných zón
- -popis práce s programy a moduly PENB/TV PT TOB
- -popis problematiky snížení potřeby tepla výměnou oken
- -popis výpočtů konstrukcí přilehlých k zemině
- -popis omezení použití výpočtů se dvěma variantami konstrukcí
- -TOB –nestejnorodé konstrukce a součinitel ZTM
- -editování katalogových hodnot materiálů
- -poznámky k zadávání hodnot do programu TV

Názvy programů

- TZ Tepelné ztráty (výpočet podle ČSN 06 0210 program již není dodáván)
- TV Tepelný výkon (výpočet tepelných ztrát podle ČSN EN 12831), umožňuje vstup do modulu ENB nebo PT
- PENB Zjednodušená verze programu TV, umožňuje vstup do modulů ENB nebo PT
- TOB Posouzení stavebních konstrukcí podle ČSN 73 0540, spolupracuje s TV a PENB

Názvy modulů

- ENB Energetická náročnost budov umožňuje výpočet průkazu ENB i potřeby tepla pro žádosti na SFŽP
- PT Potřeba tepla umožňuje výpočet potřeby tepla pro žádosti na SFŽP
 - Tepelná zátěž výpočet klimatizovaných prostorů podle ČSN 73 0548

Obálka budovy – výpočet energetického štítku obálky budovy a letní a zimní stability místností podle ČSN 73 0540

Koncepce výpočtů potřeby tepla na vytápění podle ISO 13790 a TNI 73 0329

		EA = Qdem,roční/Agross	Měrná potřeba tepla
R1		Qdem = QL - η. QG	Potřeba tepla podle ISO 13790
	QL		Tepelné ztráty za posuzovaný časový úsek
		QL = QT + QTg + Qv	
		$QT = HT . (\Theta i - \Theta e) . t$	Prostupem
		$QTg = Hg . (\Theta i - \Theta e) . t$	Prostupem zeminou
		$Qv = Hv . (\Theta i - \Theta e) . t$	Výměnou vzduchu
	QG		Tepelné zisky za posuzovaný časový úsek
		QG = Qsol + Qi	
		Qsol = Gm . Asol funkce SS	Zisky z osluněním podle TNI 73 0329 a 30
		Qi =	Vnitřní zisky podle TNI 73 0329 a 30
	η	Účinnost využití zisků	ISO 13790
		η = funkce (QG/QL, Cm)	
		HT = U . A . b	
		Hg = U . A . b	
		Hv = 0,33 . V	
		V = Vv + Vx	
		Vv	Podle TNI odvozeno z počtu osob

	Vx = funkce (Vi, n50, e, f)	ISO 13789
U	Součinitel prostupu tepla	ČSN 73 0540
А	Plocha stavební konstrukce	Měřeno z vnějších rozměrů
Asol	Asol = A.(1-FF).q.0,9.Fs	Účinná solární plocha okna, ISO 13790
b	Redukční činitel	Zohledňuje vliv sousedních prostorů vytápěných i nevytápěných a zeminy. Pro účely ZÚ je potřeba stanovit b výpočtem
t	Délka trvání výpočtového intervalu	Podle TNI se jedná o výpočty s měsíčním krokem

Algoritmus výpočtu konstrukce přilehlých k zemině podle ČSN EN ISO 13370:2009

1. Charkteristický rozměr B'podlahy

3. Přídavná izolace (okrajová)

4. Vytápěný suterén

$$\begin{split} L_{S=} &= A \cdot U_{bf} + z \cdot P \cdot U_{bw} \quad \textit{konstrukce p`rilehle'k zemine'} \\ dt &= w + \lambda \left(R_{Sl} + R_f + R_{Se} \right) \end{split}$$

 $dw = \lambda \left(R_{Si} + R_w + R_{Se} \right)$

$$U_{bf} = \frac{2\lambda}{\pi \cdot B' + dt + 0,5z} \cdot \ln\left(\frac{\pi \cdot B'}{dt + 0,5z} + 1\right)$$
$$U_{bw} = \frac{2\lambda}{\pi \cdot z} \left(1 + \frac{0,5dt}{dt + z}\right) \cdot \ln\left(\frac{z}{dw} + 1\right)$$

5. Nevytápěný větraný suterén

$$L_{S} = A \cdot U$$

$$\frac{1}{U} = \frac{1}{U_{f}} + \frac{A}{A \cdot U_{bf} + z \cdot P \cdot U_{bw} + h \cdot P \cdot U_{w} + 0.33n \cdot V}$$

Algoritmus výpočtu vlivu sousedních nevytápěných zón podle ČSN EN ISO 13789:2009

Vliv nevytápěné zóny

Následující popis je prováděn na kombinaci programů PENB-PT, platí však i pro případy: PENB-ENB, TV-PT a TV-ENB.

1)

Ze složky PROTECH, kterou instalační program založil na pracovní ploše, vybereme program Posouzení energetické náročnosti budov (PENB) nebo program Tepelný výkon (TV). Program PENB je jednodušší verze programu TV.

2)

3) Katalog Lokalit

Skupina Čem 72.0540-2005	^	Lokalita	1	te	IV	d ₁₂ dny	t _{es12} °C	Z m	VR	1
[*] eská republika		A Horské oblasti nad 800		-20		0	0,0	800		
Blovensko		A Horské oblasti nad 900		-20		0	0,0	900		1
est růžice		Benešov		-15		234	3,5	327		
SN EN 12831-2005		Beroun (Králův Dvůr)		-15		225	3,7	229		
		Blansko (Dolní Lhota)		-15		229	3,3	278		
		Brno		-15		222	3,6	227		
		Bruntál		-17		255	2,7	546		
		Břeclav (Lednice)		-13		215	4,1	159		
		Česká Lípa		-15		232	3,3	276		
		České Budějovice		-17		232	3,4	384		
		Český Krumlov		-17	~	243	3,1	489		
		Děčín (Březiny,Libverda)		-15		225	3,8	141		
		Domažlice		-17	~	235	3,4	428		
		Frýdek-Místek		-15		225	3,4	300		
		Havlíčkův Brod		-17		239	2,8	422		
		Hodonín		-13		208	3,9	162		
		Hrader Králové		.15		229	34	244		_
< >\ <u>SU</u> /	Ŧ	$ \langle \rangle \langle 12^{\circ} U \langle 13^{\circ} U \rangle \langle 15^{\circ} U \rangle \rangle$								

Lokalitu vybíráme z ČSN 73 0540:2005 nebo z ČSN EN 12831:2005. Obsah skupiny Česká republika je neúplný.

4)

Okno pro zadání konstrukcí otevřeme na kartě **Konstrukce** z místní nabídky tabulky **Konstrukce** nebo tlačítkem **Nová**. V okně **Konstrukce** vybereme v poli **OK** standardizované označení konstrukce. Pokud potvrdíme nabízenou hodnotu způsobu zadání **ZZ = 0**, zaktivujeme pole Součinitel prostupu U pro zadání součinitele prostupu tepla z klávesnice.

PENB 3.1.3 - Licence: 999999, PROTECH s.r.o.	C
Soubor Úpravy Budova Katalogy Nástroje Okno Nápověda	
M DAPROGAPROTECHAPENBIZakazha/0.A.ENB	
Idvie o hudové Konstrukce Vvzby	
Kilknete prayym tlacitkem na pracovni piose okna.	
Edinova	
Qdstranit	
Úgravy	
🕅 Konstrukce - varianta 1	
Pro výběr materiálů použit Katalog CZ V Popis	
Příhelní k zmíně Z kvivalentní součinitel prostupu tepla Storno	
Southeast and the second	
Nomové údaje Uvas/Uvan 0.000/00 Wm²k1 Skladba	
Faktor pro okna kU 1.00 KC Varianta Název d Odstranit 2	
Cena 0 Kčm²	

Zadání konstrukcí v programu TOB

Pokud v okně Konstrukce zvolíme způsob zadání ZZ=Z, lze tlačítkem umístěným za tímto polem otevřít program TOB.

Na kartě **Prostředí** lze do pole Popis(V1) vložit text, který dále bude zobrazován ve většině tiskových dokumentů. Nejdůležitější údaj, který je potřeba na kartě Prostředí nastavit, je **Zařazení konstrukce**, které určuje požadované a doporučené hodnoty podle ČSN 73 0540.

DK ZZ PZ V2 V2? HZ U(V1) U(V2) W/(m ² -K) W/(m ² -K	U _{ubu} V(1) U _{ubu} V(2) W/(m ² K) W/(m ² K) U _{ubu}	
😥 Konstrukce - varianta 1		
Pro výběr materiálů použít Katalog CZ -	Popis	
Označení konstrukce OK SO1 🖵	TOB2007 verze 13.0.0 - SO1	X
Přílehlá k zemině 🔽 z 🔤 🔤 m	Prostředí tateriál použitý v zakázce Skladba VZV Teploty Tlaky PDT Výsledky	
Způsob zadání ZZ Z 💌)	Stavební konstrukce Označení konstrukce SO1 Tvp SRK Norma ČSN	
Teplota za konstrukcí tzk V ▼ *C		
Součinitel prostupu U 0.380 💌 W·r		
Normové údaje U _{NP} /U _{ND} 0.00/0.00 W·r	– Budova ?	
Faktor pro okna kU 1,00	 s převažující návrhovou vnitřní teplotou v rozsahu 18°C + 24°C 	
Cena 0 Kč·m-2	C ostatní budovy pro teploty venkovní e _{eo} -15,0 °C vnitřní ^e im 20,0 °C	
Rozměr 1 x m x f	- Konstrukce ?	
Rozměr 2 y m ×	Zařazení konstrukce Stěna - venkovní Jode ČSN 73 0540:	
Plocha A m ² Propustnost q v	Hranice zóny AND Tepelný odpor počítat AND Konstrukce s dňúzně málo AND jen do hydroizolace AND	
Podíl rámu a vliv ostění %	Prostředí Vnitřní Venkovní	
Přídavek k délce spáry ALS m	Odnor při přestvou B. 0.130 m².K.W ⁻¹ Odnor při přestvou B. 0.040 m².K.W ⁻¹	
Délka spáry LS	Návrhová teplota e, 20.0 °C Návrhová teplota e, 15.0 °C	
Součinitel průvzdušnosti i LV	Relativní vlhkost 🛛 e 50.0	
SEZNAM (V1 (V2/	pro výpočet šíření vlhkosti	
	Odpor při přestupu R _i 0,250 m ² ·K·W ⁻¹ Odpor při přestupu R _e 0,040 m ² ·K·W ⁻¹	

6)

V dalším kroku přejdeme na kartu **Skladba**.

@ PENB 3.1.3 - Licence: 999999, PROTECH s.r.o.	• X
Soubor Úpravy Budova Katalogy Nástroje Okno Nápověda	
W D/PROG/PROTECH/PENB/Zakazky/0_ALENB	
Údaje o budové Konstrukce Vazby	
0K ZZ PZ V2 V2? HZ U(V1) U(V2) U _{vet} (V2) * <u>Otevřit</u>	
Reg Konstrukce - vananta 1 22	
Pro výběr materiálů použit Katalog CZ v Folse	
02načení konstrukce 0K SO1 -	
Přilehlá k zemíně 🗖 z 🛄 m Prostředí Materiál použitý v zakázod Skladba VZV Teploty Tlaky PDT Výsledky	
Způsob zadání ZZ Z · Součinitelé prostupu tepla: požadovaný U _{NP} 0,38 Wm ² K ⁻¹ doporučený U _{ND} 0,25 Wm ² K ⁻¹	
Teplota za konstrukciji tzk. V V V	
Součinitel prostupu U 0.380 V Wr Vistys e zadávají v pořadí od vněřního líce k vnějšímu líci Locoborka in okonica in mr. Wr	
Normové údaje U _{NIP} /U _{ND} 0.00/0.00 Wr Ku Vrstva Nazev d 21M * Rez konstrukcí mm	
Faktor pro okna kU 1.00 105-01 Z vr. B Omitka vápenná 10,00 0,00 470 mm	
Cena 0 K5 m ² 115101 2 vr. B DP 290/40/55 (1/00) 450,00 0,00	
Rozměr1 x m x 256012 Pvr. B EPS 150 130.00 0.05	
Rozmér 2 y m x Průběh teploty v kostrukci	
Plocha A m ² Zadání / Tepelný odpor / Diřúzní odpor / Diřúzní odpor / Plocha v e	
Propustnost q v Korekční člen sU/V1] 0.1 sU/V2] 0.02 ?	
Podli rámu a viiv ostění 👘 👘 🗏 Tepekrý odpor nevytápěných prostorů R., 🛛 0.00 m²K.W ⁻¹	
Přídavek k délce spáry ALS m Varianta 1 nevyhovuje Hodnocení konstrukcí	
Délka spáry LS Destanting tepla RT = 0.768 m ² K.W ⁴ vyhovuje/nevyhože	
Součinitel průvzduřnostii ; V J J J J J J J J J J J J J J J J J	
10 10 10 10 Observation Base 4206 m24 / W1 10 10	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
Pro napovedu stiskni F1 NUM	11.

Tlačítkem Uložit(TOB) můžeme dát povel k uložení aktuální konstrukce do souboru TOB.

Jednotlivé vrstvy vybíráme z katalogu, který je dostupný ze sloupce KC. Ve sloupci Varianta přiřazuje program vrstvám atribut **Z vr. – Základní vrstva**. Pokud mají všechny vrstvy konstrukce atribut **Z vr.,** potom se jedná se o jednovariantní konstrukci, které lze přiřadit korekční člen Δ**U(V1).** Pokud chceme současně vytvořit obě varianty konstrukce (varianta 1 – jen stávající stav, varianta 2 - stávající stav doplněný o nově přidané tepelné izolace), pokračujeme v zadávání vrstev, o které bude stávající konstrukce doplněna. Těmto vrstvám přiřadíme ve sloupci Varianta atribut **P vr. – Přidaná vrstva**. Takto vytvoříme v rámci zadání jedné skladby dvě varianty konstrukce. Současně je potřeba zadat pro konstrukci ve variantě 2 korekční člen Δ**U(V2).**

Problematika volby hodnot korekčních členů je popsána v ČSN 73 0540-4, TNI 73 0329 a 30 a podrobně rozebrána v kmenové normě ČSN EN ISO 6946, kde jsou popsány metody výpočtu korekčních členů pro některé typické případy.

Program umožňuje přiřadit každé vrstvě činitel Z_{TM} . Tímto činitelem je korigován součinitel tepelné vodivosti λ na hodnotu λ ekv, kterou lze kompenzovat vlivy nehomogenity příslušné vrstvy. Pokud zohledníme kotvení zateplovacích systémů pomocí tohoto součinitele, měla by být obhajitelná nižší hodnota korekčního členu **d**U. Činitel ZTM by měl být hlavně používán u hlavní izolační vrstvy.

Použití hodnot ZTM umožňuje použít menší hodnotu korekčního členu dU(V1) a dU(V2).

Lehké rámové konstrukce

Při výpočtu konstrukcí, u kterých je izolační materiál vkládán mezi dřevěné hranoly (klasikckým případem je izolace střechy mezi krokvemi) je **nezbytně nutné používat součinitel ZTM**. Zde je třeba uvažovat o hodnotě ZTM=0,4. U následující izolační vrstvy, kterou jsou překryty i krokve, může být hodnota ZTM výrazně menší.

Pokud bychom požadovali přesný výpočet součinitele prostupu tepla u takovýchto nestejnorodých konstrukcí, je možné provést tento výpočet v programu TOB, po volbě typ konstrukce = nestejnorodá. Více viz dále.

8)

Okno Konstrukce pro zadání konstrukcí do úlohy v případě, kdy byla konstrukce zadána pomocí programu TOB

0K ZZ PZ V2 V2? HZ U(V1) U(V2) Uekv ⁻ Uekv ⁻ *	Otevřít	Zavřením okna programu TOB se vrátíme do
SO1 Z D Ø (1.320 0.346)	Nová	programu PENB (TV). V seznamu konstrukcí na
Konstrukce - varianta 1	hunlikovat	kartě Konstrukce je zobrazena nově zadaná
Pro výběr materiálů použít Katalog CZ 🛫	Popis portherm+80izolace	konstrukce. V okně Konstrukce je zobrazena
Označení konstrukce OK SUU ▼ Přilehlá k zemině □ z ? m	Ekvivalentní součinitel prostupu tepla Storno	skladba pro variantu 1 .
Způsob zadání ZZ Z v … Teplota za konstrukcí tzk V v 10	Uekv/U	
Součinitel prostupu U 1.320	Skladba KC Varianta Název d 1/2	
Korekční faktor kU 1.00	105-01 V1 Om(tka vápenná 10,00 1151-011 V1 CP 290/140/65 (* 450 00	
Cena 0 Kčm** Rozměr 1 x _ m x _	105-01 V1 Omítka vápenná 15,00	
Rozměr 2 y m × Plocha ∆ m² (≾am		
Podíl rámu a vliv ostění 2000 %		
Přídavek k délce spáry ALS m Délka spáry LS Máll	✓ > Zadání / Tepelný odpor /	
Součinitel průvzdušnosti i Lv	✓ Hranice zóny	
-		

OK ZZ PZ V2 V2? HZ U(V1) W/(m \$01 Z Image: Comparison of the	U(V2) U _{ekv} U _{ekv} ^	Otevřit Nová	Přepínačem 1/2 můžeme přepnout na zobrazení skladby pro variantu 2 . Současně se
ENE Konstrukce varianta	2		aktivuje tlačítko Odstranit 2 , kterým lze ze
Pro výběr materialů použit Označení konstrukce Přílehlá k zemině (Způsob zadání : Teplota za konstrukcí Součinitel prostupu Normové údaje U _{NJP} /U Korekční faktor Cena Rozměr 1 Rozměr 2 Elocha	Katalog CZ v DK 501 v z 2 m z 2 m tak V v ° °C U 0.346 v V0 0.38/0.25 Wm²K ⁻¹ V0 0.38/0.25 Wm²K ⁻¹ V0 0.38/0.25 Wm²K ⁻¹ V0 0.38/0.25 Wm²K ⁻¹ v0 0.56 m² x m x y m x x 2 cm	V OK Ekvivalentní součinitel prostupu tepla Storno Ulekv W/(m²-K) Ulekv/U Skladba KC Varianta Název 105-01 V1 Omítka vápenná 10.00 "151-011 V1 Omítka vápenná 15.00 "105-01 V1 Omítka vápenná 15.00 "107a-06 V2 Polystyren pěnový 80.00 599-005 V2	skladby odstranit vrstvy náležející variantě 2.

10)

Následující obrázek zobrazuje stav, při zadávání konstrukce typu **Výplň**. Pro tyto konstrukce volíme způsob zadání **ZZ=0** a veškeré údaje zadáváme do aktivních polí.

Ze zadaných rozměrů **x, y** je vypočítána stavební plocha **A** výplně. Pomocí násobitelů je z těchto rozměrů vypočítána i délka **LS** spáry. Ta ale nemá pro výpočty v programech **PENB** a **TV** žádný význam. Je určena jen pro výpočty tepelných ztrát podle ČSN 06 0210 v programu **TZ**. Rovněž součinitel průvzdušnosti **i**_{LV} nevstupuje do žádných výpočtů souvisejících s hodnocením budov podle ČSN EN ISO 13790.

Pro výpočty související s hodnocením budov má zásadní význam hodnot Podíl rámu a součinitel propustnosti.

Výměna oken

Zadáme okno označené např. OZ1 ve variantě 1. U starších oken můžeme zadat hodnotu součinitele prostupu tepla U = 2,4 W/(m2.K) a hodnotu součinitele propustnosti slunečního záření q = 0,75. Zadáme podíl rámu. Pro zadání okna OZ1 ve variantě 2 stiskneme tlačítko Vytvořit 2.

U tohoto okna nesmí být hodnota součinitele prostupu tepla U > 1,2 W/(m2.K). U těchto oken s dvojsklem bývá hodnota propustnosti slunečního záření q = 0,67, u trojskla 0.50.

Program umožňuje zadat ve druhé variantě jiný rozměr okna. To lze využít v případě, kdy investor v rámci výměny oken chce současně změnit rozměry. Častým případem může být, že budou dvě malá okna nahrazena jedním větším. Tento postup je také možný. Vlastní počet oken ve variantě 1 a variantě 2 se ale zadává až na kartě Zóna (viz dále).

11)

Po naplnění seznamu konstrukcí, klikneme na nástrojové liště na ikonu E nebo PT, v závislosti na tom, zda máme zakoupený modul ENB (výpočet podle vyhlášky 148 + zelená úsporám) nebo PT (výpočet jen pro Zelená úsporám).

Modul PT (popis platí i pro modul ENB)

Na kartě **Budova** vybereme druh budovy **RD** či **BD**. Typ výpočtu je pevně nastaven na SFŽP-Výpočet podle TNI a nelze ho měnit. To je vše, co z karty **Budova** ovlivňuje výpočet pro **SFŽP**. Ostatní údaje souvisí s výpočtem **ENB**. Údaje geometrické charakteristiky budovy mají význam pro výpočet obálky budovy na kartě **Obálka budovy**.

PENB 3.0.9 - Licence: 999999, PROTECH s.r.o.	×
ubor Úpravy Budova Katalogy Ná <u>stroje</u> Okno Nápověda	
DxPROGxPROTECH/PENB\ZakazkyRR Kutnä Hora.ENB	
Údaje o budové Konstrukce Vazby	
OK ZZ PZ V2/HZ UV1/HZ U4/HZ U4/HZ U4/HZ U4/HZ U4/HZ U4/HZ OTOM	
S01 0 V V 1.250 0.250 №ox	
SNT D GRADUIT 1200 LOS	
stadorim jesudomi za zakon z Kon zakon z	
Profit zóny Plocha na osobu It _{poó} It _{kon} souviséjicími s výpočty pro SFŹP	
D. Namerić but 26 67 1 1 200	
RD-0146/mistrosti 0,00 1 24 24 365	
RD - 6yt SFZP 27.00 1 24 24 365	
Lin Uzivari Avstaperi Chlazeni Vetrari Lepelné zsky	
SEZNAM VTV Protection P	
HD-byt13/30 27,00 1 24 24 365	
(1) N Užívání / Vrásořní / Chlazení / Větrání / Teoretné zisku /	
Geometrické charakteristiky budovy	
Vnější objem budovy V 475,9 m ³ Celková podlahová plocha budovy A _o 138,0 m ²	
Celková plocha obáky budovy A 383,0 m² Objemový faktor tvaru budovy A/V 0.00 m²/m³	
Zavřít	
nápovědu stiskní F1	11

Po zadání údajů na kartě **Budova** přejdeme na kartu Zóny. Nejdříve musíme definovat zónu v seznamu zón a následně přiřadit zóně konstrukce, které ji obklopují.

PENB 3.1.0 - Li	icence: 999999, PROTECH s.r.o.								
Soubor Úpravy	Budova Katalogy Nástroje Okno I	Nápověda							
] 🗅 📽 🖬	6 🖻 🖻 🥭 🖻 🖻 🖳 🕅	?							
D:\PROG\PR	R PTV 13790 v.3.1.0	<u> </u>							
	Budova Zóny Výpočty Obálka budovy	SFŽP							
ок д	Seznam zón		Výpo	očet pro variant	u 1 - SFŽP	Varianta <u>2</u>			
S01 C	Číslo Vybraná Typ	eiH eic ℃ ℃	A _{gross} m ²	Druh	Název	Profil	Osoby	n h ⁻¹	V _f m ³ /h/mj
0Z1 C	Nejsou zóny Povelem z místní nabídky tabulky Seznam zón vložíme do seznamu první zónu. Údaje o zóně jsou zadávány v okně Parametry zóny.								
	Místnosti zóny Číslo Účel A	Seznam IK U U _{ekv} ¥ W/(m W/(m W·m.	konstrukcí hran x y m m	nice zóny A PO m ²	AR F _F m ² %	Typ Pzk	ťz	U _{ekv} b	ss skH

13)

Okno pro zadání parametrů zóny. Význam jednotlivých polí se zobrazí po stisknutí tlačítla F1

🙀 Parametry zóny TNI					×
Číslo zóny 1 Typ I - posuzo	vaná 💌	?	SFŽP - výpočet podle TI	NI	
Profil	v	Název	rodinný dům		
Podlahová plocha zóny A _g	ross 0,00 m ²	Konstrukce	lehké do 600 kg/m3		•
Druh budovy	RD - Rodinný dům	Vnitřní objem zóny		V _i	0,0 m ³
Výpočtová teplota v zóně	20,0 °C	Intenzita výměny vzduchu - stávající s	tav	n ₅₀ (V1)	5,0
Počet bytů v zóně	1	Intenzita výměny vzduchu - nový stav		n ₅₀ (V2)	5,0
Projektovaný počet osob v zóně	1	Součinitelé zatížení větrem	e 0,01	f 20	,00
Větrání	přirozené 🔻	Rozdíl objemového toku vzduchu při r	nuceném větrání	dV	m ³ /h
Účinnost zpětného získávání tepla	%	Přídavný objemový tok vzduchu V	/ _s (V1) 0,0	V ₈ (V2)	0,0 m ³ /h
		ОК		Store	.

Podlahová plocha **Agross** je dána součtem celkových vnitřních vytápěných ploch podlaží. Do této plochy nesmí být zahrnuta podlahová plocha garáže. I kdyby byla garáž vytápěna. Do této plochy mohou být zahrnuty plochy malých nevytápěných místností. (vnitřní chodby, různé komory atp.) Z této plochy je prováděn výpočet měrné potřeby tepla.

V případě, kdy provedeme výměnu oken, dochází z pravidla ke změně veličiny n50.

Přídavný objemový tok vzduchu bude mít nenulovou hodnotu jen v případě kdy při nuceném větrání je objem přiváděného a odváděného množství vzduchu různý.

14) Po zadání zóny do seznamu zón můžeme zadávat konstrukce tvořících hranici zóny.

Kalkulačka pro výpočet objemu budovy vyskládáním z jednotlivých těles.

Pro vkládání konstrukcí do seznamu konstrukcí na hranici zóny slouží okno **Konstrukce zóny**. Do seznamu konstrukcí lze zadat jen konstrukce, které jsou připraveny na kartě **Konstrukce**. Výběr konstrukce provádíme v rozbalovacím seznamu v poli **Označení konstrukce (1)**.

Důležité je správné nastavení **Prostředí za konstrukcí** v poli **Pzk (2)**. V závislosti na volbě Pzk je aktivováno pole (**3**), do kterého se zapisuje číslo zóny, je-li **Pzk = nevytápěná zóna**, nebo teplota, je-li **Pzk= vytápěná budova**.

Pzk = vytápěná zóna je určeno jen pro výpočty **ENB**. V rámci výpočtu pro **SFŽP** může být jen jedna posuzovaná (vytápěná zóna).

Pokud v poli **Označení konstrukce (1)** vybereme jedno z označení OZ, OD, OT OJ, DO, DB, které náležejí výplním, aktivuje se pole **(4)** pro zadání počtu otvorů (= počtu výplní). Zde je možné zadat odlišný počet výplní pro variantu 1 a variantu 2.

Také je možné zadat různé rozměry pro V1 a V2. To umožňuje rozlišit změny rozměrů po zateplení budovy.

Je-li zadávaná konstrukce typu výplň aktivuje tlačítko Clonění.

Tlačítkem **Clonění** lze otevřít okno **Konstrukce – clonění**, určené k zadání všech faktorů, které ovlivňují výpočet tepelných zisků průsvitnými výplněmi.

17)

Konstrukce - clonění

🙀 Konstrukce - clonění	Hodnoty veličin A, FF a q jsou zadávány při vkládání
Plocha výplně A 1.80 m² Činitel rámu F_F 31,500 % Plocha skla A_{skla} 1.23 m² Celková propustnost q 0,67 % Stínění horizontem F_h % Stínění markýzou F_o 1,00 Stínění žebrem F_f 1,00 Činitel stínění F_s 1,00 Účinná solární plocha A_s 0,83 m² Korekční činitel clonění F_c I II III IV V VI 1,00 1,00 1,00 1,00 1,00 1,00 VI VII IX X XI XII 1,00 1,00 1,00 1,00 1,00 1,00	konstrukce do úlohy (karta Konstrukce programu PENB/TV) a mohou být různé pro variantu 1 a variantu 2. Kterou z variant v okně vidíme, závisí na stavu přepínače volby výpočtu na kartě Zóny . Celkový činitel stínění Fs = Fh . Fo . Ff Zejména při žádostech o dotaci po výměně oken by měl zpracovatel zvážit, zda není třeba do výpočtu zohlednit vliv horizontu (stromy, sousední budovy).

Přepínač variant výpočtu

Korekční činitel clonění

Korekční činitel clonění **Fc** lze zadávat po měsících. Pro účely výpočtů potřeby tepla na vytápění s ním nepracujeme. Jeho použití má význam při zpracování průkazu energetické náročnosti budovy (ENB), kdy lze snížit potřebu energie na chlazení zohledněním vlivu clonících žaluzií, které v letních měsících snižují tepelné zisky z oslunění.

Celkový přehled o výplních je na listu **Výplně**.

Ve sloupci **Fc** korekčního činitele clonění je zobrazován součet hodnot všech dvanácti měsíců. Hodnota 12 vyjadřuje, že v žádném měsíci není použit korekční člen pro clonění.

PENB 3.1.0 - Lic	ence: 999999,	PROTECH s.r.c) .													x
Soubor Úpravy	Budova Kat	alogy Nástroj	e Okno	Nápověda	а											
			e, N	Ŷ)										
D:\PROG\PR	PTV 13790	v.3.1.0	<u> </u>	C & ID											×	
Udaje o budově	Budova Zór	₩ Vúpočtu I ()bálka budo	vul SFŽP	1											
	Seznam zón	. [1	Vý	počet pro va	riantu 1 - SF2	P.	Varianta <u>2</u>	1					
System roz	Číslo	Vybraná	Тур		.c	Agross	Druh	Název	Pr	rofil	Osoby	n	V _f	V.	<u>^</u>	
······································	1			°C	20.00	m ² 19	0.00 BD - Bod	innú důn Bod	nnú dùm		1	h ⁻¹	m ³ /h/m	i m ^{3.} ł	17.50	
Lokalita-					20,00	15	0,00110-1100	nny dan 110d	nny dan				0,00	40,00	11,50	
Nadmořsk																
Klimatická															-	
Výpočtov	Místnosti zór	w Love		OK	Seznam k	onstrukcí hr	anice zóny	In	In	le.	lr.	In		100		
Roční prů	Lisio	Ucel	^		m ² m ² m ²	٩ ٩		^r h	^r o	Гf	rs.	۲ _F %	m ²	PU	Â	
		aod miadioad		S01 D01	41,60	3 91	0.67	12.00	1.00	1.00	1.00	1.00	0.00	2.62	3	
				0Z1	1,80	1,80	0,67	12,00	1,00	1,00	1,00	1,00	0,00	1,21	2	
				S01 0Z2	49,14 3.15	3.15	0.67	12.00	1.00	1.00	1.00	1.00	0.00	2.11	4	
				0Z3	6,30	6,30	0,67	12,00	1,00	1,00	1,00	1,00	0,00	4,22	1	
				S01	3,15 51,74	3,15	0,67	12,00	1,00	1,00	1,00	1,00	0,00	2,11	4	
				0Z4	0,36	0,36	0,67	12,00	1,00	1,00	1,00	1,00	0,00	0,24	2	
				S01	3,68 44,20	3,68	0,67	12,00	1,00	1,00	1,00	1,00	0,00	2,47	6	
				0Z4	0,36	0,36	0,67	12,00	1,00	1,00	1,00	1,00	0,00	0,24	4	
				D04	1,80	1,80 1,20	0,67 0,67	12,00 12,00	1,00	1,00	1,00	1,00	0,00	1,21 0,80	1	
				STR1	223,20										0	
				PDL1	223,20										U	
			-	<u>∢</u>) Za	ákladní úda λ Výplně										Ŧ	
	Měrná ztráta	prostupern tepla	[W.K ⁻¹]			Naplr	nit seznam	? PI	ocha systémo	ové hranice	A 633,1	m ²				
	konstrukce přirážka za	ті Н _{Т,k} 138, LV Н _{Т №} 63.0	3					Vr	iější objem zć	óny	V 580,3					
	celkem	H _T 201,	7 Нд	72,8		.ineární vaz	by ULV(V1)	0,10 U _{LV(V2)}	0,00 ?	W/m ^{2.} K	🗌 νýροč	st				
	Větráním:	H _v 5,8														
															Zavřít	
															Zann	
Pro nápovědu stiskn	ni F1														NUM	
															1.122.001	

Zobrazený obsah karty Zóny patří příkladu, který je dodáván s programem TV a PENB.

U konstrukcí STR1, SO2 a PDL1 je vidět ve sloupci **Pzk** a **ČZ** přiřazení k pomocným nevytápěným zónám. Zóny jsou definovány v seznamu zón a každá má zadány konstrukce, které ji oddělují od vnějšího prostředí nebo zeminy.

Do konstrukcí pomocné zóny nepatří konstrukce, která tvoří hranici mezi posuzovanou a pomocnou zónou.

Tuto konstrukci zadáváme jen v seznamu konstrukcí posuzované zóny a přiřazujeme ji číslo sousední nevytápěné zóny.

Na základě měrných tepelných ztrát pomocné zóny, je vypočítána hodnota Uekv konstrukce, ke které je zóna přiřazena. Hodnoty jsou zobrazeny ve sloupci Uekv. Poměr Uekv/U vyjadřuje hodnotu b, kterou lze zadat do sloupce b. Číselný údaj musí do sloupce "b" vložit uživatel. Současně je potřeba obsluhovat i sloupec b ve variantě 2.

Ve spodní části karty jsou umístěna pole ULV(V1) a ULV(V2) pro zadání přirážky na zvýšení průměrné hodnoty součinitele prostupu tepla obálky budovy ΔUem podle tabulky 3 z TNI 73 0329 a 30.

Do pole ULV(V1) budeme zpravidla zadávat hodnotu 0,1, jelikož ve stávajícím stavu obálky budovy není zajištěna souvislá tepelně izolační vrstva. Pokud bude předmětem výpočtu **jen výměna oken**, případně spojená s izolací stropů nebo podlah, bude též i v poli ULV(V2) hodnota 0,1.

Pokud bude provedena souvislá izolace vnějšího pláště obálky budovy, bude hodnota ULV(V2)= 0,05, a při splnění požadavků uvedených v TNI může být i lepší.

Na kartě SFŽP je zobrazen výsledek.	Protokol k výpočtu lze otevřít tlačítkem	Protokol a vytisknout,	nebo uložit do formátu
PDF.			

in a build		(-	-												
le o budo		azby														_
	PTV 13790 v.3.1.	3														
	Budova Zóny V	/ýpočty Ot	bálka budovy	SFŽP F	rimární ener	gie										
1	Údaio lao unuičiuat	Dro 2012001	uápí žádostí c	dotooi u rór			á úsporám									
2		più zpiacov	ani zadosu c		nci programu	5121 200	ia usporani.									
11	Vnitřní výpočtová t	teplota		⊖ _i	20,0		Výměr	na vzduchu	Vv	105,00	m³/h		Protokol			
21 22	Podlahová plocha	objektu		A _{gross}	224,50	m ²	Vnitřni	í tepelné zisk	y <mark>Φ</mark> i	2,32	W/m ²					
_1 _21	Roční potřeba tepl	la na vytápě	ní	Q _{dem}	14513,2	kWh/rok										
31					Varianta 1	Varianta	2			Úspora		Na	dpis sestavy	y		
11	Měrná potřeba I	tepla na v	ytápění	EA	64,65	64,65		m².rok)		0,0	% sta	ávající stav b	oudovy			
-111						,					1					
							- 1									
H12	Zobrazení výpo	čtu pro va	ariantu 1		Vari	anta <u>2</u>										
H12 1 2	Zobrazení výpo	čtu pro va	iriantu 1	Únor	Vari Březen	anta <u>2</u> Duben	Květen	Červen	Červenec	Srpen	Září	Říjen	Listopad	Prosinec	Rok	-
H12 1 2 1	Zobrazení výpo	čtu pro va °C	Leden	Únor 1,0	Vari Březen 4,0	anta <u>2</u> Duben 9,0	Květen 14,6	Červen 17,0	Červenec 18,2	Srpen 18,8	Září 13,8	Říjen 9,4	Listopad 4,0	Prosinec -0,5	Rok 9,0	
H12 1 2 1 2	Zobrazení výpo Theta,e,m tnM	čtu pro va °C Ms	Leden -1,0 2,7	Únor 1,0 2,4	Vari Březen 4,0 2,7	anta <u>2</u> Duben 9,0 2,6	Květen 14,6 2,7	Červen 17,0 2,6	Červenec 18,2 2,7	Srpen 18,8 2,7	Září 13,8 2,6	Říjen 9,4 2,7	Listopad 4,0 2,6	Prosinec -0,5 2,7	Rok 9,0	
H12 1 2 1 2 3	Zobrazení výpo Theta,e,m tnM HV	čtu pro va °C Ms W/K	Leden -1,0 2,7 35,0	Únor 1,0 2,4 35,0	Vari Březen 4,0 2,7 35,0	anta <u>2</u> Duben 9,0 2,6 35,0	Květen 14,6 2,7 35,0	Červen 17,0 2,6 35,0	Červenec 18,2 2,7 35,0	Srpen 18,8 2,7 35,0	Září 13,8 2,6 35,0	Říjen 9,4 2,7 35,0	Listopad 4,0 2,6 35,0	Prosinec -0,5 2,7 35,0	Rok 9,0	
H12 1 2 1 2 3	Zobrazení výpo Theta,e,m tnM HV QT,H	čtu pro va °C Ms W/K kWh	Leden -1,0 2,7 35,0 2956,5	Únor 1,0 2,4 35,0 2416,1	Vari Březen 4,0 2,7 35,0 2252,6	anta <u>2</u> Duben 9,0 2,6 35,0 1498,7	Květen 14,6 2,7 35,0 760,3	Červen 17,0 2,6 35,0 408,7	Červenec 18,2 2,7 35,0 253,4	Srpen 18,8 2,7 35,0 168,9	Září 13,8 2,6 35,0 844,7	Říjen 9,4 2,7 35,0 1492,3	Listopad 4,0 2,6 35,0 2179,9	Prosinec -0,5 2,7 35,0 2886,1	Rok 9,0	
H12 1 2 1 2 3	Zobrazení výpo Theta,e,m tnM HV QT,H QT,H	čtu pro va °C Ms W/K kWh kWh	Leden -1,0 2,7 35,0 2956,5 0,0	Únor 1,0 2,4 35,0 2416,1 0,0	Vari <u>Březen</u> 4,0 2,7 35,0 2252,6 0,0	anta <u>2</u> Duben 9,0 2,6 35,0 1498,7 0,0	Květen 14,6 2,7 35,0 760,3 0,0	Červen 17,0 2,6 35,0 408,7 0,0	Červenec 18,2 2,7 35,0 253,4 0,0	Srpen 18,8 2,7 35,0 168,9 0,0	Září 13,8 2,6 35,0 844,7 0,0	Říjen 9,4 2,7 35,0 1492,3 0,0	Listopad 4,0 2,6 35,0 2179,9 0,0	Prosinec -0,5 2,7 35,0 2886,1 0,0	Rok 9,0	ŕ
412 1 2 1 2 3	Zobrazení výpo Theta,e,m triM HV QT,H QT,H QT,H QV,H	čtu pro va °C Ms W/K kWh kWh kWh	riantu 1 Leden -1,0 2,7 35,0 2956,5 0,0 547,3	Únor 1.0 2,4 35,0 2416,1 0,0 447,2	Vari 4,0 2,7 35,0 2252,6 0,0 417,0	anta <u>2</u> Duben 9,0 2,6 35,0 1498,7 0,0 277,4	Květen 14,6 2,7 35,0 760,3 0,0 140,7	Červen 17,0 2,6 35,0 408,7 0,0 75,7	Červenec 18,2 2,7 35,0 253,4 0,0 46,9	Srpen 18,8 2,7 35,0 168,9 0,0 31,3	Září 13,8 2,6 35,0 844,7 0,0 156,4	Říjen 9,4 2,7 35,0 1492,3 0,0 276,2	Listopad 4,0 2,6 35,0 2179,9 0,0 403,5	Prosinec -0,5 2,7 35,0 2886,1 0,0 534,2	Rok 9,0	
412 1 2 1 2 3	Zobrazení výpo Theta.e.m tnM HV QT.H QT.H QT.H QV.H QL.H	čtu pro va °C Ms W/K kWh kWh kWh kWh	riantu 1 Leden -1,0 2,7 35,0 2956,5 0,0 547,3 3503,8	Únor 1.0 2,4 35,0 2416,1 0,0 447,2 2863,3	Vari Březen 4,0 2,7 35,0 2252,6 0,0 417,0 2669,6	anta 2 Duben 9,0 2,6 35,0 1498,7 0,0 277,4 1776,1	Květen 14,6 2,7 35,0 760,3 0,0 140,7 901,0	Červen 17,0 2,6 35,0 408,7 0,0 75,7 484,4	Červenec 18,2 2,7 35,0 253,4 0,0 46,9 300,3	Srpen 18,8 2,7 35,0 168,9 0,0 31,3 200,2	Září 13,8 2,6 35,0 844,7 0,0 156,4 1001,1	Říjen 9,4 2,7 35,0 1492,3 0,0 276,2 1768,6	Listopad 4,0 2,6 35,0 2179,9 0,0 403,5 2583,5	Prosinec -0,5 2,7 35,0 2886,1 0,0 534,2 3420,4	Rok 9,0	
112 1 2 2	Zobrazení výpo Theta.e.m tnM HV QT.H QT.H QT.H QV.H QL.H YH	čtu pro va °C Ms W/K kWh kWh kWh kWh	triantu 1 Leden -1,0 2,7 35,0 2956,5 0,0 547,3 3503,8 0,2	Únor 1.0 2,4 35,0 2416,1 0,0 447,2 2863,3 0,2	Vari <u>Březen</u> <u>4,0</u> 2,7 35,0 2252,6 0,0 417,0 2669,6 0,3	anta 2 Duben 9,0 2,6 35,0 1498,7 0,0 277,4 1776,1 0,5	Květen 14,6 2,7 35,0 760,3 0,0 140,7 901,0 1,2	Červen 17,0 2,6 35,0 408,7 0,0 75,7 484,4 2,1	Červenec 18,2 2,7 35,0 253,4 0,0 46,9 300,3 3,4	Srpen 18,8 2,7 35,0 168,9 0,0 31,3 200,2 5,0	Září 13,8 2,6 35,0 844,7 0,0 156,4 1001,1 0,9	Říjen 9,4 2,7 35,0 1492,3 0,0 276,2 1768,6 0,4	Listopad 4,0 2,6 35,0 2179,9 0,0 403,5 2583,5 0,2	Prosinec -0,5 2,7 35,0 2886,1 0,0 534,2 3420,4 0,1	Rok 9,0	
412 1 2 1 2 3	Zobrazení výpo Theta,e,m triM HV QT,H QT,H QV,H QL,H YH ETA,H	čtu pro va ℃ Ms W/K kWh kWh kWh kWh	triantu 1 Leden -1,0 2,7 35,0 2956,5 0,0 547,3 3503,8 0,2 1,0	Únor 1,0 2,4 35,0 2416,1 0,0 447,2 2863,3 0,2 1,0	Vari 4,0 2,7 35,0 2252,6 0,0 417,0 2669,6 0,3 1,0	anta 2 9,0 2,6 35,0 1498,7 0,0 277,4 1776,1 0,5 0,9	Květen 14,6 2,7 35,0 760,3 0,0 140,7 901,0 1,2 0,7	Červen 17,0 2,6 35,0 408,7 0,0 75,7 484,4 2,1 0,5	Červenec 18,2 2,7 35,0 253,4 0,0 46,9 300,3 3,4 0,3	Srpen 18,8 2,7 35,0 168,9 0,0 31,3 200,2 5,0 0,2	Září 13,8 2,6 35,0 844,7 0,0 156,4 1001,1 0,9 0,8	Říjen 9,4 2,7 35,0 1492,3 0,0 276,2 1768,6 0,4 1,0	Listopad 4,0 2,6 35,0 2179,9 0,0 403,5 2583,5 0,2 1,0	Prosinec -0,5 2,7 35,0 2886,1 0,0 534,2 3420,4 0,1 1,0	Rok 9,0	
412 1 2 1 2 3	Zobrazení výpo Theta.e.m M HV QT.H QT.H QV.H QL.H YH ETA.H Qi	čtu pro va "C Ms W/K kWh kWh kWh kWh	Leden -1,0 2,7 35,0 2956,5 0,0 547,3 3503,8 0,2 1,0 387,2	Únor 1.0 2.4 35.0 2416,1 0.0 447,2 2863,3 0,2 1.0 349,7	Vari 4.0 2.7 35,0 2252,6 0,0 417,0 2669,6 0,3 1,0 387,2	anta 2 Duben 9,0 2,6 35,0 1498,7 0,0 277,4 1776,1 0,5 0,9 374,7	Květen 14,6 2,7 35,0 760,3 0,0 140,7 901,0 1,2 0,7 387,2	Červen 17,0 2,6 35,0 408,7 0,0 75,7 484,4 2,1 0,5 374,7	Červenec 18.2 2.7 35,0 253,4 0,0 46,9 300,3 3,4 0,3 387,2	Srpen 18,8 2,7 35,0 168,9 0,0 31,3 200,2 5,0 0,2 387,2	Září 13,8 2,6 35,0 844,7 0,0 156,4 1001,1 0,9 0,8 374,7	Říjen 9,4 2,7 35,0 1492,3 0,0 276,2 1768,6 0,4 1,0 387,2	Listopad 4.0 2.6 35.0 2179.9 0.0 403,5 2583,5 0.2 1.0 374,7	Prosinec -0,5 2,7 35,0 2886,1 0,0 534,2 3420,4 0,1 1,0 387,2	Rok 9,0	
H12 1 2 1 2 3	Zobrazení výpo Theta.e.m tr.M HV GT.H GT.H QT.H QL.H YH ETA.H Qi Qsol	čtu pro va "C Ms W/K kWh kWh kWh kWh kWh	Leden -1.0 2.7 35.0 2956.5 0.0 547.3 3503.8 0.2 1.0 387.2 200.1	Únor 1.0 2.4 35.0 2416,1 0.0 447,2 2863,3 0.2 1.0 349,7 253,6	Vari 4.0 2.7 35.0 2252,6 0.0 417,0 2669,6 0.3 1.0 387,2 422,9	anta 2 Duben 9,0 2,6 35,0 1498,7 0,0 277,4 1776,1 0,5 0,9 374,7 541,4	Květen 14,6 2,7 35,0 760,3 0,0 140,7 901,0 1,2 0,7 387,2 649,1	Červen 17,0 2,6 35,0 408,7 0,0 75,7 484,4 2,1 0,5 374,7 630,0	Červenec 18.2 2.7 35.0 253.4 0,0 46.9 300.3 3,4 0,3 3,4 0,3 387.2 632.4	Stpen 18.8 2.7 35.0 168.9 0,0 31.3 200.2 5.0 0,2 387.2 617.3	Září 13,8 2,6 35,0 844,7 0,0 156,4 1001,1 0,9 0,8 374,7 497,9	Arijen 9,4 2,7 35,0 1492,3 0,0 276,2 1768,6 0,4 1,0 387,2 364,5	Listopad 4,0 2,6 35,0 2179,9 0,0 403,5 2583,5 0,2 1,0 374,7 158,5	Prosinec -0.5 2.7 35,0 2886,1 0,0 534,2 3420,4 0,1 1,0 387,2 120,9	Rok 9.0	
H12 1 2 1 2 3	Zobrazení výpo Theta,e,m tmM HV QT,H QT,H QT,H QL,H YH ETA,H Qi QSol QG,H	čtu pro va "C Ms W/K kWh kWh kWh kWh kWh kWh	Leden -1,0 2,7 35,0 2956,5 0,0 547,3 3503,8 0,2 1,0 387,2 200,1 587,3	Únor 1,0 2,4 35,0 2416,1 0,2 2863,3 0,2 1,0 349,7 253,6 603,3	Vari Březen 4,0 2,7 35,0 2252,6 0,0 417,0 2669,6 0,3 1,0 387,2 422,9 810,1	anta 2 Duben 9,0 2,6 35,0 1498,7 0,0 277,4 1776,1 0,5 0,9 374,7 541,4 916,1	Květen 14.6 2,7 35,0 760,3 0,0 140,7 901,0 1,2 0,7 387,2 649,1 1036,6,3	Červen 17,0 2,6 35,0 408,7 0,0 75,7 484,4 2,1 0,5 374,7 630,0 1004,7	Červenec 18.2 2,7 35,0 253,4 0,0 46,9 300,3 3,4 0,3 387,2 632,4 1019,6	Srpen 18.8 2,7 35.0 168,9 0,0 31,3 200,2 5,0 0,2 387,2 617,3 1004,5	Září 13,8 2,6 35,0 844,7 0,0 156,4 1001,1 0,9 0,8 374,7 497,9 872,6	Říjen 9,4 2,7 35,0 1492,3 0,0 276,2 1768,6 0,4 1,0 387,2 364,5 751,7	Listopad 4,0 2,6 35,0 2179,9 0,0 403,5 2583,5 0,2 1,0 374,7 158,5 533,2	Prosinec -0.5 2.7 35,0 2886,1 0,0 534,2 3420,4 0,1 1,0 387,2 120,9 508,1	Rok 9,0	

Na kartě Primární energie lze dokončit hodnocení pasívních domů podle TNI 73 0329 a 30

ENB 3.1.3 - Licence: 9	99999, PROTECH s.r.o.	
or Úpravy Budova	a Katalogy Nástroje Okno Nápověda	
ጅ 🔒 🐰 🛍 I		
PTV 13790 v.3.1.	3	×
Budova Zónv I \	/únočitu] Ωbálka budovu] SFŽP Primární energie	
Vúpočet primár	ý energie pro hodnocení pasivních domů podle TNI 73 0329 a 30	
Vépočet pro up		
 A) Eleksieké es 		
Energonositel	Mětná spotřeba Počet osob Q _{fuel} Q _{fuel} /A _{nnos}	
THE COMPANY	kWh/(osoba.rok) kWh/rok kWh/m ² rok	
Elektricka energie	9 800,00 6 4800,00 21,38 v	
B) Pomocná en	ergie na provoz OS	
Energonositel	Ucel uziti Merna spotreba Pocet bytů U _{fuel} U _{fuel} /A _{gross} ∧ kWh/tosba.rok) kWh/tok kWh/m²-rok	
Elektrická energie	e Teplovodní vytápění, přirozené větrání 100,00 1 100,00 0,45	
1	*	
C) Energie na o	hřev TV (550 kWh/osobu a rok) Ny dvidení – – – – – – – – – – – – – – – – – – –	
Q _{dem} , w = 3300.0		
Palivo	Popis zdroje 11 CPE UUP Dodava Udem Ufuel Ufuel/Agross A 1% % kWh kWh kWh/m ²	
Zemní plyn	Kotel plynový běžný 84,0 1,00 100 3300,00 3928,57 17,50	
D) Energie na v	mtánāní.	
Q _{dem} .H = 29026.5	i kWh/rok	
Palivo	Popis zdroje n _{CPE} COP Dodává Q _{dem} Q _{fuel} Q _{fuel} /A _{gross}	
7	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
Zemni piyn	Kotel plynový bezný 84,0 1,00 100 23026,46 34030,31 103,52	
	*	
E) Primární ene	rgie a CO ₂ (B+C+D)	
Energonositel	lfprim fCO2 Qfuel Qprim Qprim/Agross Emise CO2 ▲	
Elektrická energie	2 3,00 0,70 100,00 300,00 1,34 70,00	
Zemní plyn	1,10 0,20 38483,88 42332,27 188,56 7696,78	
	-	
Emino CO	kan 7760 9 kg Primární anargia polkom 190 bluh/m²rak	
Emise CO2 Ce		
		7
		Zavrit
povědu stiskni F1		NUM

Omezení při použití dvouvariantního výpočtu.

Pokud v rámci úpravy objektu dochází ke změně podlahové plochy Agross, je třeba takovž objekt počítat ve dvou samostatných úlohách.

21)

Snížení potřeby tepla výměnou oken.

Základní rovnice pro výpočet potřeby tepla na vytápění podle ISO 13790 je

 $Qdem = QL - \eta . QG$

Výpočet je prováděn po měsících.

QL tepelné ztráty v příslušném měsíci

QG tepelné zisky v posuzovaném měsíci

ŋ účinnost využití tepelných zisků v měsíci

Okna jsou prvkem, který ovlivňuje jak **QL**, tak **QG**. Nová okna snižují jak ztráty **QL**, tak zisky **QG** (menší propustnost). Tepelná ztráta **QL** je dána součtem ztrát prostupem a ztrát větráním. Ztráty prostupem QT= f(HT) se vypočítají z měrné ztráty **HT** prostupem budovy.

Ztráty větráním Qv = f(Hv) se vypočítají z měrné ztráty větráním Hv. Měrná ztráta budovy větráním je dána vztahem:

(1) Hv = 0,33 . V, kde V je výměna vzduchu v objektu.

V příloze C rozlišuje ČSN EN ISO 13789 přirozené a nucené větrání.

Při přirozeném větrání vstupuje do výpočtu (1) jen **požadovaná** výměna vzduchu V = Vpož, převážně odvozená od hygienických požadavků. V TNI 73 0329 a 30 je určena hodnotou 25 m³/osobu a koeficientem přítomnosti 0,7. Změna kvality těsnosti oken se při tomto postupu do výpočtu nijak nepromítá.

Pro nucené větrání je v ČSN EN ISO 13789 použit postup, který zohledňuje i kvalitu obálky budovy vyjádřenou činitelem intenzity **n50** výměny vzduchu.

(2) V = Vpož. (1-ηv) + Vx /C.5, ISO 13789/
 První člen zohledňuje celkovou účinnost systému zpětného získávání tepla
 Vx je přídavný objemový tok určený vztahem /C.3, ISO 13789/
 Po aplikaci (2) pro případ přirozeného větrání lze napsat vztah

(3) V = Vpož + Vi . n50 . e

Vi vnitřní objem budovy

- e činitel zatížení větrem; pro RD je v TNI 73 0329 uvedena hodnota 0,01.
- Pro BD je v TNI 73 0330 uvedena hodnota 0,07

Tento postup umožňuje do výpočtu úspory potřeby tepla zavést i u objektů s přirozeným větráním vliv změny kvality obálky budovy způsobené okny s kvalitnějším těsněním.

Vzhledem k tomu, že v programu Energie 2009 lze tento postup použit, bude doplněn i do modulů firmy PROTECH.

Poznámka k hodnotě **n50**

Hodnoty n50 jsou uvedeny v ISO 13789, tabulka C.1, s rozlišením RD a BD. Pro stávající stav budovy, kde lze úroveň vzduchotěsnosti obálky budovy hodnotit kritériem "nízká", je pro RD uvedena hodnota n50 = "více než 10". Tato formulace prakticky umožňuje s přihlédnutím ke vztahu (3) a (1) dosáhnout neomezených ztrát větráním budovy a z toho by vyplynuly neomezené úspory dosažené výměnou oken.

Na základě konzultací s panem doc. Svobodou doporučuji používat pro stávající stav RD hodnotu **n50** = maximálně 15, pro bytové domy pak maximálně 10. Pokud k tomu nebudou mít pracovníci SFŽP výhrady.

Hodnotu **n50** lze změřit. Je možné, že v některých případech by mohlo být účelné nechat změřit stávající stav hodnoty **n50**, která by pak sloužila k výpočtu výchozího stavu. Pak by samozřejmě musela být změřena i po výměně oken, aby byl přesný údaj pro výpočet dosažené úspory.

Na časté dotazy, jak ovlivňuje hodnota **ilv** spárové průvdušnosti oken výpočet potřeby tepla, je třeba odpovědět, že tato hodnota do výpočtů vůbec nevstupuje. V nových normách se pracuje s veličinou **n50**, která v sobě zahrnuje plášť budovy včetně oken.

22) Konstrukce přilehlé k zemině.

	Tento winočet ize provádět jen v programu TV. Program PENB ho
EN3 D:\PROG\PROTECH\Tv_W\Zakazky\0000.5TV	
Údaje o budově Konstrukce Vazby Místnosti Výběr	neumožňuje. Jedná se o výpočet podle ISO 13370.
I II Konstrukce přilehlé k zemině Vliv ročních změn venkovní teploty fg1 1.45 Hloubka spodní vody pod základovou deskou © do 1m C více jak 1m Go 1m C více jak 1m Go 1m C více jak 1m Údaje pro výpočet podle ČSN EN 13370 Půdouyená plocha budovy Ag Dbvod budovy P Gharakteristický parametr B' 5.5 m	Na kartě Údaje o budově II, je nutné zadat veličiny Ag a P.
Charakteristický parametr B' 5.5 m Tepeľná vodrvost zeminy 2.0 Písky a štěrky v W.m ⁻¹ .K ⁻¹ Přídavná okrajová izolace vodrovnís v Tloušťka izolačního pásu d _n 0.00 m Šířka izolačního pásu D 0.00 m Tepeľná vodrvost izolace 0.000 W.m ⁻¹ .K ⁻¹	Případná volba přídavné okrajové izolace aktivuje vstupní pole pro zadání příslušných výpočtů.

Údaje o budově Konstrukce Vazby Místnosti Výběr	Na kartě konstrukce dáme povel k vložení nové konstrukce do
OK ZZ PZ V2/V2? HZ U(V1) U(V2) User/V1 Otev/it Klikněte pravým tlačitkem na pracovní ploše okna. W/(m² W/(m² W/(m² Nová	úlohy.
Pro výběr materiálů použit Katalog CZ Popis Pro výběr materiálů použit Katalog CZ Popis Označení konstrukce OK PDL1 Ekvivalentní součinitel prostupu tepla Přileňá k zemíně z m Ukv W/(m²K) Způsob zadání ZZ V W/m²K' Ukv/U Storno Teplota za konstrukcí tzk Y *C Ukv/U Součinitel prostupu 0.500 V W/m²K' Kladba KC Varia Název M Normové údaje U _{NP} /U _{ND} 0.00/0.00 W/m²K' KC Varia Název M Odstrant 2	

Pokud po zadání označení konstrukce do pole OK zaškrtneme atribut Přilehlá k zemině, otevře se okno Přenos tepla zeminou.

Budova				
Plocha Ag 120,0 m ² Obvod P 4	4,0 m	Char.por. B'	5,5	Į.
Podlaha na zemině C Podlaha v suterénu				
Hloubka podlahy pod okolním terénem		z	0,0	m
Tloušťka obvodové stěny		W	0,00	m
Podlaha s podlahovým vytápěním			Г	
Odpor při přestupu tepla		R _{si}	0,17	m ² .K.W ⁻¹
Tepelný odpor podlahové konstrukce		R	0,000	m ² .K.W ⁻¹
Lineární činitel pro okrajovou izolaci		[\] ₩g,e	0,0000	W.m ⁻¹ .K ⁻¹
Ekvivalentní tloušťka podlahy		dt	0,42	m
Součinitel prostupu tepla · na zemině U ₀ /U		- U0	0,845	W.m ⁻² .K ⁻¹
- s okrajovou izolací U _{iz} /U		U _{iz}	0,845	W.m ⁻² .K ⁻¹
- v suterénu U _{bř} /U		U _{bf}	0,000	W.m ⁻² .K ⁻¹
obvodová stěna ve styk	u se zeminou			5
Tepelný odpor stěny		Rw	0,000	m ² .K.W ⁻¹
Ekvivalentní tloušťka stěny		d _w	0,34	m
Součinitel prostupu tepla		U _{bw}	0,00	W.m ⁻² .K ⁻¹
Storno				ОК

V záhlaví jsou zobrazeny hodnoty charakterizující budovu. Je vypočítána hodnota **Uo**, tedy ekvivalentní hodnota **Uekv** podlahové konstrukce, která má tepelný odpor R = 0 a na této desce je postavena zeď o tloušťce w=0. Po zadání skutečných hodnot **R** a **w** pro posuzovaný případ, je v poli **Uo** zobrazena hodnota **Uekv**.

24)

V praxi ale většinou skladbu podlahy zadáváme. Následující obrázek ukazuje stav při zadávání podlahy do programu B. V použitém příkladu má podlahová konstrukce nad hydroizolací jen betonovou desku.

Po zavření okna programu TOB je v okně Konstrukce-varianta 1 zobrazena skladba podlahy a vypočítaný součinitel U prostupu tepla.

D:\PROG\PROTECH\TV_W\Zakazky\0000.STV Údaje o budově Konstrukce Vazby Místnosti Výběr Hodnocení konstrukcí podle STN 73 0542.2002 DK ZZ PZ V2/V2?/HZ U/V1 U/V2 Uetu/V1 Klikněte pravým tlačítkem na pracovní ploše okna.	Zaškrtnutím, nebo tlačítkem pomoci otevřeme okno Přenos tepla zeminou.
Pro výběr materiálů použít Katalog (Z) Dznačení konstrukce OK Přílehlá k zempě z Způsob zadání ZZ Způsob zadání ZZ Součinitel prostupu U Normové údaje U _{NP} /U _{ND} Normové údaje U _{NP} /U _{ND} Korekční faktor kU	Popis stávající podlaha Stavající podlaha UK Ekvivalentní součinitel prostupu tepla Starno Uekv/U Skladba KC Varia Název Mm 101-012 V1 Beton hutný (22) 100.00

26)

Otevřeme okno Přenos tepla zeminou.

Podlaha na zemině C Podlaha v suterénu			
Hloubka podlahy pod okolním terénem	z	0,0	m
Tloušťka obvodové stěny	W	0,30	m
Podlaha s podlahovým vytápěním			
Odpor při přestupu tepla	R _{si}	0,17	m².K.W ⁻¹
Tepelný odpor podlahové konstrukce	R	0,091	m ² .K.W ⁻¹
Lineární činitel pro okrajovou izolaci	₩ _{g,e}	0,0000	W.m ⁻¹ .K ⁻¹
Ekvivalentní tloušťka podlahy	dt	0,90	m
Součinitel prostupu tepla - na zemině	17 U ₀	0,661	W.m ⁻² .K ⁻¹
- s okrajovou izolací U _{iz} /U 0,1	17 U _{iz}	0,661	W.m ⁻² .K ⁻¹

V okně doplníme tloušťku **w** stěny. Tepelný odpor podlahové konstrukce je převzatý z programu TOB. Ekvivalentní hodnota této podlahové konstrukce zobrazena v poli Uo. Zavřeme okno.

27)

V okně Konstrukce zaškrtneme pole Uekv a zadáme hodnotu Uo z okna Přenos tepla zeminou.

Konstrukce - varianta 1	×
Pro výběr materiálů použít Katalog 📿 💌 Označení konstrukce OK PDL1 👻	Popis stávající podlaha
Přílehlá k zemíně ▼ z 0.0 m Způsob zadání ZZ ▼ Teplota za konstrukcí tzk tme ▼*C	If Uekv 0.661 W/(m²K) 30000 Uekv/U 0.171 0.171 0.171
Součinitel prostupu U 3.863 W·m·2·K·1 Normové údaje U _{NP} /U _{ND} 0.00/0.00 W·m·2·K·1	KC Varia Název d Vytvořit 2
Korekční faktor kU 1,00	101-012 V1 Beton hutný (22/ 100,00 Odstranit 2

Předchozí příklad popisoval postup pro případ, když je podlaha na terénu. Příklad podlahy v suterénu je zobrazen na následujícím obrázku:

Přenos tepla zeminou ČSN EN 1337(D				X
Budova					
Plocha Ag 120,0 m ² Obvo	d P 44,0	m	Char.por. B'	5,5	
🔿 Podlaha na zemině 💽 Podlaha v su	iterénu				
Hloubka podlahy pod okolním terénem			z	1	m
Tloušťka obvodové stěny			w	0.30	m
Podlaha s podlahovým vytápěním				Г	
Odpor při přestupu tepla			R _{si}	0,17	m ² .K.W ⁻¹
Tepelný odpor podlahové konstrukce			R	0,091	m ² .K.W ⁻¹
Lineární činitel pro okrajovou izolaci			Ψg,e	0,0000	W.m ⁻¹ .K ⁻¹
Ekvivalentní tloušťka podlahy			dt	0,90	m
Součinitel prostupu tepla - na zemině	U ₀ /U	0,00	– U ₀	0,000	W.m ⁻² .K ⁻¹
- s okrajovou izo	lací U _{iz} /U	0,00	— U _{iz}	0,000	W.m ⁻² .K ⁻¹
- v suterénu	U _{bf} /U	0,14	Ubf	0,555	W.m ⁻² .K ⁻¹
obvodová st	ěna ve styku s	e zeminou	\sim $-$		
Tepelný odpor stěny			R _w	0,000	m ² .K.W ⁻¹
Ekvivalentní tloušťka stěny			dw	0,34	m
Součinitel prostupu tepla			Ubw	1,97	W.m ⁻² .K ⁻¹
Storno					ОК

Po výběru **Podlaha v suterénu** musíme zadat hloubku podlahy pod okolním terénem. Ekvivalentní hodnota **Uekv** podlahové konstrukce suterénu je zobrazena v poli **Ubf**.

Současně je spočítána ekvivalentní hodnota součinitele prostupu tepla obvodové stěny suterénu, která je přilehlá k zemině. Obrázek ukazuje stav, kdy ještě nebyl do pole **Rw** zadán tepelný odpor stěny suterénu a je vypočítána hodnota **Ubw** ekvivalentní součinitel **Uekv** obvodové stěny suterénu.

Tepelný odpor stěny suterénu zadáme do pole **Rw** až když v úloze zadáme příslušnou konstrukci např. **SO3** a v programu TOB odečteme tepelný odpor stěny suterénu.

Vypočítanou hodnotu Ubw vložíme u konstrukce SO3 do pole Uekv způsobem popsaným u konstrukce PDL1.

31)

Nestejnorodé konstrukce v programu TOB a součinitel ZTM

Popis je proveden na rámové konstrukci vyplněné vláknitou izolací a z obou stran uzavřenou bedněním. V programu TOB založíme **SO1** typu stejnorodá

Image: Nová konstrukce
Označení konstrukce OK SO1 🗸
Typ konstrukce Stejnorodá 🛄
Výpočet podle normy
ČSN 730540 : 2007
) STN 730540 : 2002
Materiál podle normy
ČSN 730540 : 2005
) STN 730540 : 2002
Normativní základna je uvedena v okně ''Nápověda/O programu''
OK Storno

Zadáme skladbu, která odpovídá výřezu s izolací.

2	Varianta	Vrstva	Název	d	Z _{TM}	^	Řez konstrukcí
09-021 -	V1	В	Dřevo měkké kolmo k vlákní	im السمال	18,00	0,00	196 mm
08a-041	V1	В	Minerální vlna MVV (50)		160,00	0,00	
)9-021	V1	В	Dřevo měkké kolmo k vlákní	ûm	18,00	0,00	
						-	
							Průběh teploty v kostrukci
							$\Theta_{ap} = 21.0 \ ^{\circ}C$ $\Theta_{ac} = 19.9 \ ^{\circ}C$
N Zadání	/ Tapalnú odpa	r / Difúnní oda	a /				
rekční člen		<u></u>	00 ? V.m ⁻² .K ⁻¹				
pelný odpor ne	vytápěných pros	torů R _u 0,	00 m ^{2.} K.W ⁻¹				
'arianta 1 🔤 🗤	hovuje	D 4070	21/1 11				
	etunu tenla	$H_T = 4.2/2$	m ^e .K.W [*] '				

Při zadávání konstrukce je nepodstatné, jakou hodnotu má korekční člen **ΔU**. Ten do výpočtu nestejnorodé konstrukce nevstupuje. Ovlivňuje zobrazenou hodnotu **U**.

Zadáme druhou stejnorodou konstrukci, která má skladbu výřezu se dřevem

0K Norma T S01 ČSN S S02 ČSN S	Typ SRK SRK		
	TOB2007 verze 11.1.9 - SC	02	×
	Prostředí Materiál použitý v z	zakázce Skladba VZV Teploty Tlaky PDT Výsledky	
	Součinitelé prostupu tepla:	požadovaný U _N 0,300 W·m ⁻² K ⁻¹ doporučený U _N 0,200 W·m ⁻² K ⁻¹	
	Vrstvy se zadávají v pořadí od	l vnitřního líce k vnějšímu líci Požadovaná hodnota R	m ² -K.W ⁻¹
	KC Varianta	Vrstva Název d ZTM A Řez konstrukcí	
	109-021 - V1	B Dřevo měkké kolmo k vláknům 18,00 0,00 196 mr	¹ Teploty Tlaky PDT Výsledky 0.300 W/m²K ⁻¹ doporučený U _N 0.200 W/m²K ⁻¹ fíci zev d mm ZTM mm 18.00 ovo měkké kolmo k vláknům 160.00 18.00 0.00 evo měkké kolmo k vláknům 18.00 vo měkké kolmo k vláknům 18.00
	109-021 ∨1 109-021 ∨1	B Dřevo měkké kolmo k vláknům 160,00 0,00 Dřevo měkké kolmo k vláknům 18,00 0,00	
Poznámka		Průběh teploty v kostrukci $\Theta_{ap} = 21.0 ^{\circ}\text{C}$ $\Theta_{si} = 17.3 ^{\circ}\text{C}$	
	<u> </u>		
	Korekční člen Tepelný odpor nevytápěných p Varianta 1 nevyhovuje Odpor při prostupu tepla Součinitel prostupu tepla	$\begin{array}{c} \Delta U & 0.00 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	

Do úlohy založíme další konstrukci. Této konstrukci nastavíme atribut – Nestejnorodá.

Nová konstrukce	x
Označení konstrukce OK SO3	•
Typ konstrukce Nestejnorodá	
Výpočet podle normy	
ČSN 730540 : 2007	
🔘 STN 730540 : 2002	
Materiál podle normy	
ČSN 730540 : 2005	
🔘 STN 730540 : 2002	
Normativní základna je uvedena v okně ''Nápověda/O programu''	•
OK Storne	

Zadání nestejnorodé konstrukce

Zadání se provádí v okně **nestejnorodá konstrukce**. Do seznamu konstrukcí se vloží všechny stejnorodé konstrukce, ze kterých lze nestejnorodou konstrukci složit. Ve sloupci podíl je uvedena hodnota podílu stejnorodé konstrukce na charakteristickém výseku nestejnorodé konstrukce. Podíl je vyjadřován v procentech.

Pro nestejnorodou konstrukci probíhá výpočet podle ČSN 73 0540 a kontrolní výpočet podle ISO 6946. Pro další práci se používá hodnota vypočítaná podle ČSN. V našem případě je výsledkem hodnota U = 0,328.

Poznámka: V nové verzi TOB byla provedena úprava, aby ve sloupci **U** byly u konstrukcí zobrazovány hodnoty Uo = U – Δ U, tedy "čistá" hodnota součinitele prostupu **U** tepla bez vlivu korekčního členu Δ U.

Construkce		
OK Norm	а Тур	
501 CSN	SRK	
<u>302 CSN</u>		
SU3 USN	NRK	
	Nestejnorodá konstrukce	
	Popis vémeu á konstrukce a izelzeí	
	Složení	Výpočet podle ČSN 730540 : 2002
	0K Varianta R _v U m ² K ⁻¹ mm %	Tepelný odpor R = 2,879 m ² .K.W ⁻¹
	S01 ien V1 4,102 0,234 196,00 70	Odpor proti prostupu tepla R _T = 3,049 m ² .K.W ⁻¹
	S02 jen V1 1,089 0,794 196,00 30	Součinitel prostupu tepla U = 0,328 W.m ⁻² .K ⁻¹
		Výpočet podle ČSN EN ISO 6946
		Odpor proti prostupu tepla R _T = 2,928 m ² .K.W ⁻¹

Vrátíme se do zadání stejnorodé konstrukce **SO1** a zde zkusmo zadáme takovou hodnotu **ZTM**, aby součinitel prostupu tepla konstrukcí **SO1** odpovídal vypočítané hodnotě nestejnorodé konstrukce. Při tomto postupu by měl korekční člen **ΔU** nulovou hodnotu, aby neovlivňoval zobrazovanou hodnotu **U**.

KC	Varianta	Vrstva	Název	d mm	Z _{TM}	^	Řez konstrukcí
109-021	V1	В	Dřevo měkké kolmo k vláknům	18,00	-	0.00	196 mm
108a-041	V1	В	Minerální vlna MVV (50)	160,00	- (0,46	
109-021	V1	В	Dřevo měkké kolmo k vláknům	18,00			
							Průběh teploty v kostrukci
							θ _{ap} = 21.0 °C θ _{si} = 19.5 °C
<u>∢ </u>	/ Tepelný odpo	r 🖌 Difúzní odp	or_/				
(orekční člen		<u>۵</u> ۵ 0,	00 2 📖 W.m ⁻² .K ⁻¹				
epelný odpor n	evytápěných pro	storů R _u 0,	00 m ^{2.} K.W ⁻¹				
Varianta 1 ne	vyhovuje						
Odpor při pr	ostupu tepla	$R_{T} = 3.043$	m ² .K.W ⁻¹				

Úprava katalogových hodnot fyzikálních veličin jednotlivých materiálů

Na kartě **Materiál použitý v zakázce** vybereme položku, u které potřebujeme upravit některou katalogovou hodnotu. Stiskneme tlačítko **Editovat**.

109.021 Dřevo měkké kolmo 108a-04' Minerální vlna MVV (KC 041 Kód A1	Popis Minerální vlna MVV (50)				
	ČSN 73 0540 ČSN 73 0540-3 1994	Hodnoty fyzikálních veličin Definiční teplota		10,00	°C	
	8.4.1	Objemová hmotnost v suchém stavu	Pide	50	kg·m ⁻³	
	Měmé jednotku MI ka 👻	Měrná tepelná kapacita v suchém stavu	Cdn	1150	J·kg-1.K-1	
	mone panelty into its	Faktor difúzního odporu min	μ	1,2		
	Cena/MJ Kč 👻	Faktor difúzního odporu max	μ	5,0		
	D ()	Součinitel difúze vodní páry min	ă _n ∙10 ⁹	0,15686667	s	
	Poznámka	Součinitel difúze vodní páry max ————————————————————————————————————	⁸ n [.] 10 ⁹	0,03764800	\$	
		Hmotnostní vlhkost	^W mk	1,0	%	
		Vlhkostní součinitel materiálu	Zw	0,0190		
a		Součinitel tepelné vodivosti ——— Výpočtové - praktické ———	λ _k	0,039	W·m ⁻¹ K ⁻¹	
		Součinitel tepelné vodivosti	λ _p	0,041	W·m ⁻¹ K ⁻¹	
		Součinitel materálu	z ₂	1,0		
		Tloušťka vrstvy	d		mm	

Na tento povel založí program v seznamu materiálů kopii položky. Kopie má stejné katalogové číslo jako původní položka, ale doplněné zprava indexem **e**. U kopie lze všechny hodnoty fyzikálních veličin editovat.

109-021 Dřevo měkké kol 108a-041 Minerální vlna M	KC 041e Kód A1 Pramen	Popis N	Minerální vlna MVV (50)		
108a-041 e Mineralni vina My	ČSN 73 0540 ČSN 73 0540-3 1994	Hodnoty fyzikálních veličin Definiční teplota Normové		10,00	°C
	8.4.1 Měrné iednotkv MJ kg. ▼	Objemová hmotnost v suchém stavu Měrná tepelná kapacita v suchém stavu	Pdn Cdn	50 1150	kg·m ⁻³ J·kg ^{-1.} K ⁻¹
	Cena/MJ	Faktor difúzního odporu min Faktor difúzního odporu max	μ _n μ _n	1,2	
	Poznámka	Součinitel difúze vodní páry min Součinitel difúze vodní páry max	ō _n :10 ⁹ δ _n :10 ⁹	0,15686667	s s
		Charakteristické Hmotnostní vlhkost Víklestní cevšinile msteriéky	Wmk	1,0	%
		Vinkostní soucinitel materialu Součinitel tepelné vodivosti Výpočtové - praktické	∠ _w ^λ k	0,0190	₩ [.] m ^{-1.} K ⁻¹
		Součinitel tepelné vodivosti	λ _p	0,041	W·m ^{•1.} K•'
		Tloušťka vrstvy	-2 d		mm

51) Poznámka k zadávání údajů do programu TV.

Zátopový součinitel fRH

V okně **Výpočet budovy** a okně **Výpočet místnosti** je k dispozici tlačítko **Komentář**, kterým lze zobrazit popis výpočtů tepelných ztrát podle ČSN EN 12831.

Pro zátopový výkon platí: $\phi(RH) = fRH \cdot A_{Pi}$

Neuvážené používání zátopového součinitele vede k tomu, že k tepelným ztrátám větráním a prostupem je přičtena hodnota, která je závislá na vnitřní podlahové ploše místnosti, bez ohledu na tepelné ztráty místnosti. U stávajících dobře udělaných objektů vídám v zasílaných úlohách u místnosti o ploše 30 m² a ztrátě do 1000 W, přirážky o hodnotě 22 . 30 m² = 660 W. To je absurdní!!! Přirážka je 66 % tepelných ztrát místnosti !

Dochází k "nekontrolovatelnému" zkreslení ztrát místností a tím i celé budovy. Objekt o vytápěné ploše 150 m², má celkovou přirážku na zátop 3300 W.

Má-li objekt vlastní tepelné ztráty prostupem a větráním 6000 W, pak projektant klidně navrhne tepelné čerpadlo o výkonu 9 300 W. **Celková přirážka ke ztrátám je větší než 50 % tepelných ztrát.**

Pokud ponecháme zátopový součinitel fRH = 0, vždy můžeme v rámci dimenzování otopných těles vhodným a kontrolovaným způsobem navýšit otopnou plochu.

Infiltrace obvodovým pláštěm

Hodnoty zadávané na kartě **Údaje o budově I** slouží k výpočtu tepelných ztrát větráním jednotlivých místností. V žádném případě nevstupují do výpočtů prováděných v modulu **PT** a **ENB**. Neovlivňují výpočet potřeby tepla pro **ZÚ** a průkaz **ENB**.

Další doplňování bude prováděno na základě četnosti dotazů uživatelů.

Ing. Zdeněk Ryšavý Nový Bor 27.11.2009